Water Level Prediction for Disaster Management Using Machine Learning Models
نویسندگان
چکیده
A flood is an overflow of water and becomes the common natural disaster. Prediction of a flood is one of the challenges for disaster management around the world especially in developing countries. Thus, more accurate flood prediction models have been investigated according to the geographical locations. In this paper, we have studied and compared some useful machine learning models such as KNN, SVR and Linear Regression for getting better water level prediction. The proposed approach is applied to Ayeyarwady river in Myanmar. The future water level is predicted based on the time series data of past water levels. By the experiment, KNN (K-Nearest Neighbour) model shows the least mean absolute error and the error rate is just 0.17%. The predicted output of the proposed model agrees in the actual water level. Therefore, KNN model can be the potential solution for successful water level forecasting application in Ayeyarwady river. Keywords— water level prediction, time series analysis, KNN, SVR, Linear regression
منابع مشابه
Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملApplication of Machine Learning Approaches in Rainfall-Runoff Modeling (Case Study: Zayandeh_Rood Basin in Iran)
Run off resulted from rainfall is the main way of receiving water in most parts of the World. Therefore, prediction of runoff volume resulted from rainfall is getting more and more important in control, harvesting and management of surface water. In this research a number of machine learning and data mining methods including support vector machines, regression trees (CART algorithm), model tree...
متن کاملRelevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation
This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...
متن کامل